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ABSTRACT

Markov decision processes (MDPs) are used to model a wide variety of applica-
tions ranging from game playing over robotics to finance. Their optimal policy
typically maximizes the expected sum of rewards given at each step of the decision
process. However, a large class of problems does not fit straightforwardly into this
framework: Non-cumulative Markov decision processes (NCMDPs), where instead
of the expected sum of rewards, the expected value of an arbitrary function of the
rewards is maximized. Example functions include the maximum of the rewards or
their mean divided by their standard deviation. In this work, we introduce a general
mapping of NCMDPs to standard MDPs. This allows all techniques developed
to find optimal policies for MDPs, such as reinforcement learning or dynamic
programming, to be directly applied to the larger class of NCMDPs. Focusing on
reinforcement learning, we show applications in a diverse set of tasks, including
classical control, portfolio optimization in finance, and discrete optimization prob-
lems. Given our approach, we can improve both final performance and training
time compared to relying on standard MDPs.

1 INTRODUCTION

Markov decision processes (MDPs) are used to model a wide range of applications where an agent
iteratively interacts with an environment during a trajectory. Important examples include robotic
control (Andrychowicz et al., 2020a), game playing (Mnih et al., 2015), or discovering algorithms
(Mankowitz et al., 2023). At each time step t of the MDP, the agent chooses an action based on the
state of the environment and receives a reward rt. The agent’s goal is to follow an ideal policy that
maximizes

Eπ

[
T−1∑
t=0

rt

]
, (1)

where T is the length of the trajectory and the expectation value is taken over both the agent’s
probabilistic policy π and the probabilistic environment. There exist a multitude of established
strategies for finding (approximately) ideal policies of MDPs, such as dynamic programming and
reinforcement learning (Sutton & Barto, 2018).

A limitation of the framework of MDPs is the restriction to ideal policies that maximize Equation (1),
while a large class of problems cannot straightforwardly be formulated this way. For example, in
weakest-link problems, the goal is to maximize the minimum rather than the sum of rewards, e.g. in
network routing one wants to maximize the minimum bandwidths along a path (Cui & Yu, 2023).
In finance, the Sharpe ratio, i.e. the mean divided by the standard deviation of portfolio gains, is an
important figure of merit of an investment strategy, since maximizing it will yield more risk-averse
strategies than maximizing the sum of portfolio gains (Sharpe, 1966). We therefore require a method
to tackle non-cumulative Markov decision processes (NCMDPs), where instead of the expected sum
of rewards, the expectation value of an arbitrary function of the rewards is maximized. First steps
in this direction have already been taken, but are currently limited to specific settings, e.g. by being
restricted to only certain MDP solvers, deterministic environments, and restricted classes of non-
cumulative objectives (for more details on these approaches see Section 4). The main contribution of
this paper is twofold:
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Figure 1: Mapping of a decision process with non-cumulative objective (blue) to a corresponding
Markov decision process with adapted states and rewards (orange) that can be solved by standard
methods (black). For details and notation, see Section 2.

• First, we provide a theoretical framework for a general and easy-to-implement mapping
of NCMDPs to corresponding standard MDPs. This allows the direct application of ad-
vanced MDP solvers such as reinforcement learning or dynamic programming to tackle also
NCMDPs (see Figure 1).

• Next, we perform numerical experiments focusing on reinforcement learning. We show
applications in classical control problems, portfolio optimization, and discrete optimization
problems using e.g. the non-cumulative max objective and the Sharpe ratio. Using our
framework, we find improvements in both training time and final performance as compared
to relying on standard MDPs.

2 THEORETICAL ANALYSIS

Preliminaries In an MDP, an agent iteratively interacts with an environment during a trajectory.
At each time step t, the agent receives the current state st of the environment and selects an action
at by sampling from its policy π(at|st), which is a probability distribution over all possible actions
given a state. The next state of the environment st+1 and the agent’s immediate reward rt are then
sampled from the transition probability distribution p(rt, st+1|st, at), which depends on the MDP.
This process repeats until it reaches a terminal state. The ideal policy of the agent maximizes the
expected sum of immediate rewards, i.e. Equation (1). Note that we take this ideal policy to be part
of the definition of an MDP to distinguish MDPs from NCMDPs with different ideal policies. For
simplicity, we discuss only non-discounted, episodic MDPs. However, generalization to discounted
settings is straightforward.

Non-cumulative Markov decision processes In the following, we denote states and rewards
related to NCMDPs by s̃t and r̃t, respectively, to distinguish them from MDPs. We define NCMDPs
equivalently to MDPs except for their ideal policies maximizing the expectation value of an arbitrary
scalar function f of the immediate rewards r̃t instead of their sum, i.e.

Eπ [f(r̃0, r̃1, . . . , r̃T−1)] . (2)

To accommodate trajectories of arbitrary finite length, we require f to be a family of functions
consisting of a function ft : Rt → R for each t ∈ N. For brevity, we denote ft(r̃0, r̃1, . . . , r̃t−1) =
f(r̃0, r̃1, . . . , r̃t−1). NCMDPs still have a Markovian transition probability distribution but their
return, i.e. Equation (2), depends on the rewards in a non-cumulative and therefore non-Markovian
way. Thus, NCMDPs are a generalization of MDPs. Due to this distinction, MDP solvers cannot
straightforwardly be used for NCMDPs. To solve this problem, we describe a general mapping from
an NCMDP M̃ to a corresponding MDP M with adapted states and adapted rewards but the same
actions. The mapping is chosen such that the optimal policy of M̃ is equivalent to the optimal policy
of M . Therefore, a solution for M̃ can readily be obtained by solving M with existing MDP solvers,
as shown in Figure 1. In the following, we formalize these ideas.

Definition 1. Given an NCMDP M̃ with rewards r̃t, states s̃t, actions at, the Markovian state
transition probability distribution p̃(r̃t, s̃t+1|s̃t, at), and non-cumulative objective function f , we
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Table 1: Examples of non-cumulative objective functions f .

f(r̃0, . . . , r̃t) Additional state information ht Adapted reward rt

max(r̃0, . . . , r̃t) h1 = r̃0, ht+1 = max(ht, r̃t) rt = max(0, r̃t − ht)

min(r̃0, . . . , r̃t) h1 = r̃0, ht+1 = min(ht, r̃t) rt = min(0, r̃t − ht)

Sharpe ratio
MEAN(r̃0,...,r̃t)
STD(r̃0,...,r̃t)
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define a corresponding MDP M with rewards rt, states st, the same actions at, and state transition
probability distribution p(rt, st+1|st, at) with functions ρ and u, and vectors ht such that

rt = f(r̃0, . . . , r̃t)− f(r̃0, . . . , r̃t−1) = ρ(ht, r̃t), (3)

st = (s̃t, ht) with ht+1 = u(ht, r̃t), (4)

p
(
rt, st+1=(s̃t+1, ht+1)|st=(s̃t, ht), at

)
=

∑
r̃t

p̃(r̃t, s̃t+1|s̃t, at)δht+1,u(ht,r̃t)δrt,ρ(ht,r̃t), (5)

where δ is the Kronecker delta. For continuous probability distributions, the sum should be replaced
by an integral and the δ by Dirac delta functions.

We now provide some intuition for this definition: Equation (3) ensures that the return of M , i.e.∑T−1
t=0 rt, is equal to the return of M̃ , i.e. f(r̃0, . . . , r̃T−1). To compute the immediate rewards rt of

M in a purely Markovian manner, we need access to information about the previous rewards of the
trajectory. This can be achieved by extending the state space with ht, which preserves all necessary
information about the reward history. The function u in Equation (4) updates this information at each
time step. Finally, the Kronecker deltas in Equation (5) ’pick’ all the possible r̃t that result in the
same ht+1 and rt. For example, for f(r̃0, . . . , r̃t) = min(r̃0, . . . , r̃t), we can choose r0 = h1 = r̃0
followed by ht = u(ht, r̃t) = min(ht, r̃t), and rt = ρ(ht, r̃t) = min(0, r̃t − ht). More examples
are shown in Table 1.

Due to Definition 1, there is a mapping between trajectories of NCMDPs and corresponding MDPs,
which we will exploit to use the same policy for both decision processes:

Definition 2. A trajectory T̃ = (s̃0, a0, r̃0, . . . ) of an NCMDP M̃ is mapped onto a trajectory
T = map

(
T̃
)

= (s0, a0, r0, . . . ) of a corresponding MDP M by calculating rt according to
Equation (3), setting st = (s̃t, ht) with ht calculated according to Equation (4), and keeping the
actions at the same.

Note that multiple T̃ potentially map to the same T since ρ and u, and, therefore, the map operation
are not necessarily injective. We can now state the main result of this manuscript:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Theorem 1. Consider an NCMDP M̃ and a corresponding MDP M , both defined as in Definition 1.
Then, given a policy π(at|st) of M , the expected return of M is equal to the expected return of M̃ ,
i.e.

Eπ

[
T−1∑
t=0

rt

]
= Eπ [f(r̃0, . . . , r̃T−1)] , (6)

if π(at|st) is used to interact with M̃ as follows: At each time step t, map the current trajectory T̃ of

M̃ to a trajectory T = map
(
T̃
)

of M as described in Definition 2, thereby finding st. Then choose

an action according to π(at|st).

For a proof of this theorem see Appendix A. Since M is a standard MDP, we can find its optimal
policy using standard methods and are guaranteed that it will also be the ideal policy of M̃ . More
generally, also non-ideal policies will yield the same return for both decision processes. By mapping
the NCMDP to an MDP, all guarantees available for MDP solvers, e.g. convergence proofs for
Q-learning (Watkins & Dayan, 1992), or the policy gradient theorem for policy-based methods
(Sutton et al., 1999), directly apply also to NCMDPs.

We demonstrate the need for the additional state information ht in the two-step NCMDP depicted in
Figure 2, which captures the main conceptual difficulties in solving NCMDPs: A non-cumulative
objective in a stochastic environment. Here, the goal is to maximize the expected minimum of the
rewards, i.e. min(r̃0, r̃1). If r̃0 = 1 in the first step, the ideal policy is to choose a1 in the second
step, while if r̃0 = −1 the agent should choose a0. Therefore, the choice of the ideal action depends
on information contained in the past rewards, which is captured by h1 = r̃0. We show the MDP
constructed from the NCMDP as described above in the Appendix in Figure A1 and its state-action
value function found by value iteration in Table A1. Our method finds the optimal policy, while
previous methods for solving NCMDPs fail even in this simple example because they neglect the
extra state information (see Table A2).

The question remains how to find the functions u and ρ given a new objective f . In principle,
methods developed based on past (Bacchus et al., 1996; 1997) or future (Thiébaux et al., 2006) linear
temporal logic could be used. However, these require an expensive computation over all possible
states of the MDP making them inefficient for online learning. There is always at least one MDP
corresponding to a given NCMDP since we can take ht = [r̃0, . . . , r̃t−1] with u(ht, r̃t) = [ht, r̃t]
and ρ(ht, r̃t) = f([ht, r̃t]) − f(ht). However, this is not ideal because it leads to a state size that
grows linearly with the trajectory length. In Appendix B.1, we provide a necessary and sufficient
condition for objectives f with constant size additional state information ht. However, this condition
might be difficult to check in practice. Therefore, we also provide a sufficient, but not necessary,
condition that is easier to verify and covers a large class of functions, e.g. all functions in Table 1. For
functions in this class, we also provide an explicit construction of u, ρ, and ht (see Appendix B.2). In
practice, we have empirically observed that a simple analytical consideration leads to ht of a small
and constant size for each of the objectives f considered in this manuscript, which is desirable for
efficient learning and integration with standard function estimators such as neural networks.

3 EXPERIMENTS

From an implementation perspective, our scheme of mapping NCMDPs to MDPs requires minimal
effort, since we can treat both the NCMDP and the used MDP solver as black boxes by simply adding
a layer between them, as shown in Figure 1. In addition, our treatment facilitates online learning and
does not require any computationally expensive preprocessing of the NCMDP. This opens the door
for researchers with specific domain knowledge, who are not necessarily experts in reinforcement
learning, to use standard libraries such as stable-baselines3 (Raffin et al., 2021) to solve their
non-cumulative problems. Conversely, it allows reinforcement learning experts to quickly tackle
existing environments using our method.

There are three kinds of experiments presented in this manuscript:

1. We show that our method can find the optimal policy in a proof-of-principle stochastic
NCMDPs where previous methods fail (see previous section, Figure 2).
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Figure 2: Two-step decision process with non-
cumulative objective. In the first step, the agent
has only one action available and receives a prob-
abilistic reward. In the second step, the agent
can choose between two actions.

Figure 3: Trade-off between average cumula-
tive reward in the Lunar lander environment (in-
set) and maximum speed increase for the non-
cumulative MAXVELPPO and the cumulative
SUMVELPPO algorithm.

2. In Appendix C, we compare our method with the only previous approach for solving
NCMDPs with objectives other than the max function, which was introduced by Cui
& Yu (2023), and is only applicable with more restrictive objectives f , in deterministic
environments, and in conjunction with Q-learning methods. We find in our experiments that
even in this restricted setting, our more general method performs slightly better.

3. In the following sections, we show applications in real-world tasks where previous methods
used for solving special cases of NCMDPs cannot be applied. In lack of a general method
for solving NCMDPs, state-of-the-art approaches to these real-world problems have so far
relied on approximate solutions based on standard MDPs which we use as a baseline to
compare our method to.

We provide details on hyperparameters, compute resources, and training curves for all experiments in
Appendix D.

3.1 CLASSICAL CONTROL

As a first use case of our method, we train a reinforcement learning agent in the Lunar lander
environment of the gymnasium (Towers et al., 2023) library. The agent controls a spacecraft with
four discrete actions corresponding to different engines while being pushed by a stochastic wind.
Immediate positive rewards rt are given for landing the spacecraft safely with small negative rewards
given for using the engines. A realistic goal when landing a spacecraft is to not let the spacecraft get
too fast, e.g. to avoid excessive frictional heating. Therefore, we define an NCMDP where the agent
is penalized for its maximum speed during a trajectory, i.e. we try to maximize

Eπ

[
T−1∑
t=0

rt − cmax (v0, . . . , vT−1)

]
, (7)

where vt is the speed of the agent at time t and c defines a trade-off between minimizing the maximum
speed and the other goals of the agent. We train RL agents using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) on the MDP constructed from the NCMDP as described above
(MAXVELPPO). To show the trade-off between the sum of the agents’ original cumulative rewards∑T−1

t=0 rt and their maximum speed increase during a trajectory, we train agents for different c. Each
value of c corresponds to a marker in Figure 3. We compare our results to an RL agent with a
similar but cumulative objective maximizing Eπ

[∑T−1
t=0 (rt − cv2t )

]
(SUMVELPPO). As shown in

Figure 3, the non-cumulative MAXVELPPO agent is consistently able to find a better trade-off than
the cumulative SUMVELPPO agent. All experiments were performed with 5 agents using different
seeds. We plot average results and standard deviation as error bars for both the cumulative reward
and the speed increase (mostly hidden behind markers).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

1 4 7 10
Training period

0

10

20

Av
g. 

Sh
ar

pe
 ra

tio
DIFFSHARPE
SHARPE (ours)

Figure 4: Portfolio optimization. Sharpe ra-
tio during 10 different training periods for al-
gorithms maximizing the cumulative differen-
tial Sharpe ratio (DIFFSHARPE) and the non-
cumulative exact Sharpe ratio (SHARPE).

Table 2: Average Sharpe ratios.

DIFFSHARPE SHARPE

Training 10.51± 1.65 13.33± 1.14
Evaluation 1.43± 0.18 1.35± 0.15

Test 0.53± 0.26 0.51± 0.09

Our method presented here could be applied to similar use cases in other classical control problems,
such as teaching a robot to reach a goal while minimizing the maximum impact forces on its joints or
the forces its motors need to apply.

3.2 PORTFOLIO OPTIMIZATION WITH SHARPE RATIO AS OBJECTIVE

Next, we consider the task of portfolio optimization where an agent decides how to best invest its
assets across different possibilities. A common measure for a successful investment strategy is its
Sharpe ratio (Sharpe, 1966)

MEAN(r̃0, . . . , r̃T−1)

STD(r̃0, . . . , r̃T−1)
, (8)

where r̃t = (Pt+1−Pt)/Pt are the simple returns and Pt is the portfolio value at time t. By dividing
through the standard deviation of the simple returns, the agent is discouraged from risky strategies
with high volatility. As the Sharpe ratio is non-cumulative, reinforcement learning strategies so far
needed to fall back on the approximate differential Sharpe ratio as a reward (Moody et al., 1998;
Moody & Saffell, 2001). However, using the methods developed in this paper we can directly
maximize the exact Sharpe ratio. We perform experiments on an environment as described by Sood
et al. (2023) where an agent trades on the 11 different S&P500 sector indices between 2006 and 2021.
The states contain a history of returns of each index and different volatility measures. Actions are
the continuous relative portfolio allocations for each day. The experiment described by Sood et al.
(2023) consists of training 5 agents with different seeds over a 5-year period, periodically evaluating
their performance on the following year, and testing the best-performing agent in the year after that.
Then, the time period is shifted by one year into the future resulting in a total of 10 time periods. We
re-implement this experiment by training agents using PPO with the cumulative differential Sharpe
ratio (DIFFSHARPE) or the exact Sharpe ratio (SHARPE) as their objective. As depicted in Figure 4,
the SHARPE algorithm significantly outperforms the DIFFSHARPE algorithm in the training years.
However, as shown in Table 2, on the evaluation and test years there is no significant difference
indicating over-fitting of the agents’ policies to the years they are trained on. Nonetheless, we expect
training on the exact SHARPE ratio to give consistently better results if the problem of over-fitting is
solved, e.g. by using realistic stock-market simulators which are for example being developed using
Generative Adversarial Networks (Li et al., 2020). The experiments were performed with 5 sets of 5
seeds each and the standard deviation of different sets of seeds is reported.

While the Sharpe ratio is most widely adopted in finance, our method opens up the possibility to
maximize it also in other scenarios where risk-adjusted rewards are desirable, i.e. all problems where
consistent rewards with low variance are more important than a higher cumulative reward. For
example, in chronic disease management, maintaining stable health metrics is preferable to sporadic
improvements. In emergency or customer service, ensuring predictable response times is often more
important than occasional fast responses mixed with slow ones.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.3 DISCRETE OPTIMIZATION PROBLEMS

Next, we consider a large class of applications where RL is commonly used: Problems where the
agent iteratively transforms a state by its actions to find a state with a lower associated cost. These
problems are common in scientific applications such as physics, e.g. to reduce the length of quantum
logic circuits (Fösel et al., 2021), or chemistry, e.g. for molecular discovery (Zhou et al., 2019).
Another prominent example is the discovery of new algorithms (Mankowitz et al., 2023). Intuitively,
these problems can be understood as searching for the state with the lowest cost within an equivalence
class defined by all states that can be reached from the start state by the agent’s actions.

Concretely, we consider the class of discrete optimization problems equipped with a scalar cost
function c(s̃t) and the immediate rewards r̃t = c(s̃t)− c(s̃t+1). Additionally, we are interested in
the state with the lowest cost found during a trajectory, i.e. the goal is to maximize

Eπ

[
c(s̃0)− min

k∈[0,T−1]
c(s̃k)

]
= Eπ

[
max

k∈[−1,T−1]

k∑
t=0

r̃t

]
. (9)

We conjecture that maximizing Equation (9) will yield better results than maximizing Eπ

[∑T−1
t=0 r̃t

]
due to the following reasons:

1. The agent does not need to learn an optimal stopping point.

2. Considering only the rewards up to the minimum found cost might decrease the variance of
the gradient estimate.

3. The agent does not receive negative rewards for trying to escape a local cost minimum
during a trajectory and is therefore not discouraged from exploring. This leads to learning
difficult optimization strategies requiring an intermittent cost increase more easily.

Peak environment To facilitate an in-depth analysis, we first consider a toy environment with the
cost function depicted in the inset of Figure 5 (a). The cost function was chosen to be simple while
still requiring intermittently cost-increasing actions of the optimal policy. Each trajectory lasts 10
steps and the agent’s actions are stepping to the left, right, or doing nothing. To minimize the number
of hyperparameters, we use the REINFORCE algorithm (Williams, 1992) with a tabular policy.
We compare agents trained with the non-cumulative objective Equation (9) (MAXREINFORCE)
with agents that maximize the cumulative rewards (REINFORCE). As shown in Figure 5 (a), the
MAXREINFORCE agent trains much faster. Two possible sources of this speed-up are a different,
more advantageous direction of the gradient updates and a reduced variance when estimating these
gradients. To investigate which is the case, we periodically stop training and run n = 1000 trajectories
with a fixed policy. We then compute the empirical variance of the gradient update inspired by Kaledin
et al. (2022) as

VAR =
1

n

n−1∑
i=0

∥g⃗i∥22 −

∥∥∥∥∥ 1n
n−1∑
i=0

g⃗i

∥∥∥∥∥
2

2

, (10)

where g⃗i is the gradient from a single trajectory derived either by the MAXREINFORCE or the
REINFORCE algorithm. As this variance scales with the squared magnitude of the average gradients,
we normalize it by this value to ensure a fair comparison between the two algorithms. In Figure 5 (b),
we show that in the initial phase of training, the MAXREINFORCE algorithm significantly reduces
variance. To compare the direction of the gradients we use the same data to compute the normalized
average gradients of both algorithms and show their dot product in Figure 5 (c). We find that the
gradients are correlated (i.e. the dot product is bigger than zero) but not the same. Therefore, we
conclude that the training speed-up is derived both from lower variance and a better true gradient
direction. All results reported are averaged over 10 seeds with standard deviations plotted shaded.

ZX-diagrams As a real-world use case, we consider the simplification of ZX-diagrams, which are
graph representations of quantum processes (Coecke & Kissinger, 2017) with applications e.g. in the
compilation of quantum programs (Duncan et al., 2020; Riu et al., 2023). An example of a typical
ZX-diagram is shown in the inset of Figure 6 (b). We consider the environment described by Nägele
& Marquardt (2024), where the cost function of a diagram is given by its node number, the start states
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(a) (b) (c)

Figure 5: Peak environment. (a) Cost improvement during the trajectory against training episodes
for the cumulative REINFORCE agent and the MAXREINFORCE agent maximizing Equation (9).
The inset shows the cost function of the environment. (b) Empirical variance of both agents against
training progress. (c) Estimated dot product of the average gradient of both agents against training
progress.

(a) (b)
π α π / 2

π π / 2 π / 2

α π / 2

Figure 6: ZX environment. (a) Cost improvement during the trajectory against total steps taken in the
environment for the cumulative REINFORCE agent and the MAXREINFORCE agent maximizing
Equation (9). Left inset: Zoom-in to the initial training phase. Right inset: Zoom-in to the final
training phase. (b) Entropy of the agents’ policies against total steps taken in the environment. Inset:
A typical ZX-diagram.

are randomly sampled ZX-diagrams, and the actions are a set of local graph transformations. In total,
there are 6 actions per node and 6 actions per edge in the diagram. This is a challenging reinforcement
learning task that requires the use of graph neural networks to accommodate the changing size of
the state and action space. We use PPO to train agents to maximize either Equation (9) (MAXPPO)
or the cumulative reward (PPO) with a trajectory length of 20 steps. As shown in Figure 6 (a) the
MAXPPO agent initially trains faster than the PPO agent (left inset). This is likely due to the reduced
variance and different gradient direction as described above. The PPO agent then shortly catches
up, but ultimately requires about twice as many training steps to reach optimal performance as the
MAXPPO agent (right inset). We argue that this is because the MAXPPO agent is better at exploring
and therefore learning difficult optimization strategies (reason 3 above). This is captured by the
entropy of the MAXPPO agent’s policy staying much higher than the entropy of the PPO agent, as
shown in Figure 6 (b). All reported results are averaged over 5 seeds with standard deviations plotted
shaded.

Quantum error correction Next, we focus on optimization problems where the starting state is
always the same and the optimal stopping point is known. The specific tasks we consider are the
search for quantum programs to either find new quantum error correction codes or to prepare logical
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Table 3: Results for quantum error correction environments.

Task
Area under training curve MAXPPO

PPO

Best of 10 Mean of 10

[[5, 1, 3]]e 1.0004 1.0001± 0.0008
[[7, 1, 3]]e 0.9993 0.9994± 0.0003
[[9, 1, 3]]e 0.9994 0.9994± 0.0003
[[10, 2, 4]]e 1.0013 1.0023± 0.0017
[[12, 2, 4]]e 0.9993 0.9991± 0.0007

[[5, 1, 3]]s 1.0419 1.0666± 0.0407
[[7, 1, 3]]s 1.1824 1.2090± 0.0623
[[9, 1, 3]]s 1.0060 1.0905± 0.1079
[[15, 1, 3]]s 1.1382 1.0309± 0.0806
[[17, 1, 5]]s 1.4748 1.6218± 0.2144

states of a given quantum error correction code - both critical for the eventual realization of quantum
computation (Terhal, 2015). In both cases, the agent iteratively adds elementary quantum logic gates
until the program delivers the desired result. The agents’ policies are encoded by standard multilayer
perceptrons. We train agents on five different sized problems of both tasks. For details on the used
environment, see Zen et al. (2024) and Olle et al. (2023). To obtain a single performance measure
encompassing both final performance and training speed, we continuously evaluate the mean cost
improvement of the agents and average it over the training process as suggested by Andrychowicz
et al. (2020b). Intuitively, this measure can be understood as the area under the agent’s training
curve. In Table 3, we report the quotient of this performance measure of the MAXPPO algorithm
and the PPO algorithm for both the best of 10 and the mean of 10 trained agents. The different tasks
are denoted by three integers, as customary in the quantum error correction community. We find
that the MAXPPO algorithm performs similarly to PPO in quantum error correction code discovery
(subscript e), and significantly better in logical state preparation (subscript s). We argue that the
large degeneracy present in the solution space of the code discovery task diverts the more exploratory
MAXPPO, lowering its performance to the level of PPO.

Limitation When applying MAXPPO to discrete optimization problems with long trajectories in
the many hundreds of steps, we empirically observed an initially slow learning speed. This could be
due to the agent initially mostly increasing cost and therefore receiving zero reward for almost the
entire trajectory. A possible solution could be to dynamically adjust the trajectory length in these
problems going from shorter to longer trajectories during the training process.

4 RELATED WORK

A special case of NCMDPs is first considered by Quah & Quek (2006), who adapt Q-learning
to the max objective by redefining the temporal difference error of their learning algorithms and
demonstrate their algorithms on an optimal stopping problem. However, they do not adapt state
space and do not provide theoretical convergence guarantees. Gottipati et al. (2020) rediscover
the same algorithm, apply it to molecule generation, and provide convergence guarantees for their
method, while Eyckerman et al. (2022) consider the same algorithm for application placement in fog
environments. Cui & Yu (2023) finally show a shortcoming of the method used in the above papers:
It is guaranteed to converge to the optimal policy only in deterministic settings. Additionally, they
provide convergence guarantees of Q-learning in deterministic environments for a larger class of
functions f , focusing on the min function for network routing applications. In Appendix B.1 we show
that the class of objectives f considered by Cui & Yu (2023) is a subclass of all objectives that lead
to constant size extra state information ht using our method. Independently, the max function is also
used in the field of safety reinforcement learning in deterministic environments both for Q-learning
(Fisac et al., 2015; 2019; Hsu et al., 2021) and policy-based reinforcement learning (Yu et al., 2022).
Moflic & Paler (2023) use a reward function with parameters that depend on the past rewards of the
trajectory to tackle quantum circuit optimization problems that require large intermittent negative
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rewards, albeit without providing theoretical convergence guarantees. Additionally, Wang et al.
(2020) investigate planning problems with non-cumulative objectives within deterministic settings.
They provide provably efficient planning algorithms for a large class of functions f by discretizing
rewards and appending them to the states. Recently, Veviurko et al. (2024) showed how to use the
max objective also in probabilistic settings by augmenting state space and provide convergence
guarantees for both Q-learning and policy-based methods. They then show experiments with their
algorithm yielding improvements in MDPs with shaped rewards. However, they do not redefine
the rewards, which requires adaptation of the implementation of their MDP solvers. Our method
described above reduces to an effectively equivalent algorithm to theirs in the special case of the max
objective.

A limitation of all works discussed above is that they require a potentially complicated adaptation
of their reinforcement learning algorithms and only consider specific MDP solvers or specific non-
cumulative objectives. They are also limited to deterministic settings, except for Veviurko et al.
(2024), which consider only the max objective.

5 DISCUSSION & CONCLUSION

In this work, we described a mapping from a decision process with a general non-cumulative objective
(NCMDP) to a standard Markov decision process (MDP) applicable in deterministic and probabilistic
settings. As our method is agnostic to the algorithm used to solve the resulting MDP, it works for
arbitrary action spaces and in conjunction with both off- and on-policy algorithms. Its implementation
is straightforward and directly enables solving NCMDPs with state-of-the-art MDP solvers, allowing
us to show improvements in a diverse set of tasks such as classical control problems, portfolio
optimization, and discrete optimization problems. Note that these improvements are achieved without
adding a single additional hyperparameter to the solving algorithms.

In further theoretical work, a full constructive classification of objective functions f with constant-
size extra state information ht would be desirable. From an applications perspective, there are
a lot of interesting objectives with non-cumulative f that could not be maximized so far. For
example, the geometric mean could be used to maximize average growth rates, or the function
f(r̃0, . . . , r̃t) = δt

∑t
k=0 r̃k, δ ∈ (0, 1) could be used to define an exponential trade-off between

trajectory length and cumulative reward in settings where long trajectories are undesirable. We
believe that a multitude of other applications with non-cumulative objectives are still unknown to the
reinforcement learning (RL) community, and conversely, that researchers working on non-cumulative
problems are not aware of RL, simply because these two concepts could not straightforwardly be
unified so far. This manuscript offers the exciting possibility of discovering and addressing this class
of problems still unexplored by RL.

REPRODUCIBILITY

Anonymized code including exact hyperparameters and random seeds, generated data, trained agent
weights, and instructions for running the code for all presented experiments are available for download
at https://osf.io/ajwmk/?view_only=38b116ac6633496a83657aeff43db34a.
Upon acceptance, we will make the code and data publicly available. Furthermore, we state or
provide references to all used hyperparameters and computation times for all experiments in Ap-
pendix D.
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Appendices
A PROOF OF THEOREM 1

First, we find that the probability p(T ) of a trajectory T occurring in M is the sum of the probabilities
p(T̃ ) of all possible trajectories T̃ occurring in M̃ that map to T if π is used as a policy for M̃ as
described above:

p(T ) = p(s0)

T−1∏
t=0

π(at|st)p(rt, st+1|st, at)

= p(s̃0)

T−1∏
t=0

π(at|st)
∑
r̃t

p̃(r̃t, s̃t+1|s̃t, at)δht+1,u(ht,r̃t)δrt,ρ(ht,r̃t)

=
∑

map(T̃ )=T

p(s̃0)

T−1∏
t=0

π(at|st)p̃(r̃t, s̃t+1|s̃t, at) =
∑

map(T̃ )=T

p(T̃ ),

(11)

where
∑

map(T̃ )=T is the sum over all trajectories of M̃ that map to T . The second to last step can
be shown through induction. Therefore, we find

Eπ

[
T−1∑
t=0

rt

]
=

∑
T

p(T )
T−1∑
t=0

rt =
∑
T

∑
map(T̃ )=T

p(T̃ )f(r̃0, . . . , r̃T−1)

=
∑
T̃

p(T̃ )f(r̃0, . . . , r̃T−1) = Eπ [f(r̃0, . . . , r̃T−1)] ,

(12)

where in the second step we used Equations (3) and (11), and in the third step that each T̃ maps to a
unique T . □

B OBJECTIVES f WITH CONSTANT SIZE EXTRA STATE INFORMATION ht

B.1 NECESSARY AND SUFFICIENT CONDITION FOR CONSTANT SIZE EXTRA STATE
INFORMATION ht

First, note that if we can predict f(r̃0, . . . , r̃t) in a Markovian manner, we can also predict
f(r̃0, . . . , r̃t) − f(r̃0, . . . , r̃t−1) in a Markovian manner by adding just one more dimension to
our state ht, i.e. f(r̃0, . . . , r̃t−1). Therefore, we focus on predicting f(r̃0, . . . , r̃t) in the following.
Rewriting Definition 1, we find using

f(r̃0, . . . , r̃t)− f(r̃0, . . . , r̃t−1) = ρ (r̃t, u (r̃t−1, u (r̃t−2, ...))) (13)

or equivalently
f(r̃0, . . . , r̃t) = ρ′ (r̃t, u

′ (r̃t−1, u
′ (r̃t−2, ...))) , (14)

with
u′(r̃t, h

′
t) = u′ (r̃t, (ht, ft−1)) = [u(r̃t, ht), ft−1 + ρ(r̃t, ht)] , (15)

and
ρ′(r̃t, h

′
t) = ρ(r̃t, ht) + ft−1. (16)
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Figure A1: Markov decision process constructed from the non-cumulative Markov decision process
depicted in Figure 2.

Table A1: Q-function Q of the MDP depicted in
Figure A1 (which corresponds to the NCMDP
of Figure 2) found by value iteration using our
method. The resulting policy is optimal and
results in an expected return of −0.15.

State s Action a Q(s, a)

s̃0 - −0.15
(s̃1, 1) a0 −1
(s̃1, 1) a1 −0.3
(s̃1,−1) a0 0
(s̃1,−1) a1 −0.1

Table A2: Q-function Q′ of the MDP depicted
in Figure 2 found by value iteration using the
method of Cui & Yu (2023). The resulting policy
is not optimal and results in an expected return
of −0.5.

State s̃ Action a Q′(s̃, a)

s̃0 - −0.5
s̃1 a0 0
s̃1 a1 −0.2

Given these definitions ft = f(r̃0, . . . , r̃t). If f admits a representation of the form Equation (14)
with u′ of constant output dimension, additional state information ht of the same constant size is
possible. Cui & Yu (2023) find a condition of similar form to Equation (14) for the objectives f
which their method can optimize:

f(r̃0, . . . , r̃t) = g (r̃t, g (r̃t−1, g (r̃t−2, . . . ))) , g : R2 → R. (17)

In this sense, our method can be seen as extending the class of objectives f with constant size
extra state information by allowing for ρ ̸= u and by allowing a multidimensional update function
u : Rk+1 → Rk instead of g. Also, note that the method of Cui & Yu (2023) only works in
deterministic environments in conjunction with Q-learning based methods.

B.2 SUFFICIENT CONDITION FOR CONSTANT SIZE EXTRA STATE INFORMATION ht

While Equation (14) provides a complete categorization of functions with constant size ht, in practice
it may be difficult to check whether a given function satisfies this property. In the following, we
consider a smaller set of functions including all of the functions in Table 1, and provide an explicit
construction of u, constant size ht, and ρ for functions of this class. Specifically, we consider function
families that can be written with a constant k ∈ N as

f(r̃0, . . . , r̃t) = F (t, b0, . . . , bk−1) , (18)

where F : Rk+1 → R,

bj = bj(r̃0, . . . , r̃t) = Bj

(
φj(0, r̃0), . . . , φj(t, r̃t)

)
, (19)

where φj : R2 → R, and Bj is an arbitrary binary operation, such as +,×,max,min, and

Bj(x0, . . . , xt) = Bj(xt,Bj(xt−1,Bj(...))). (20)

For example, if Bj is the multiplication operation, Bj(x0, . . . , xt) =
∏t

i=0 xi. As we show by
construction below, all objectives f of this form have extra state information ht of maximum
dimension k + 1. Since we are dealing with function families, Equation (18) introduces a notion
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Table A3: Objectives f in the form of Equation (18). All f except max
k∈[−1,t]

∑k
i=0 r̃i are permutation

invariant resulting in associative Bj .

f(r̃0, . . . , r̃t) F (t, b0, . . . , bk−1) [Bj ] [φj(t, r̃t)]

max(r̃0, . . . , r̃t) h
(0)
t B0 = max φ0(r̃t) = r̃t

min(r̃0, . . . , r̃t) h
(0)
t B0 = min φ0(r̃t) = r̃t

Sharpe ratio
MEAN(r̃0,...,r̃t)
STD(r̃0,...,r̃t)

h
(0)
t /t√

h
(1)
t /t−

(
h
(0)
t /t

)2
B0 = B1 = +

φ0(r̃t) = r̃t,
φ1(r̃t) = r̃2t

max
k∈[−1,t]

∑k
i=0 r̃i h

(1)
t + h

(0)
t

B0

(
φ0(r̃t), h

(0)
t

)
=

max
(
0, h

(0)
t − φ0(r̃t)

)
,

B1 = +

φ0(r̃t) = r̃t,
φ1(r̃t) = r̃t

r̃0r̃1 . . . r̃t h
(0)
t B0 = × φ0(r̃t) = r̃t

Harmonic mean
1

1
r̃0

+···+ 1
r̃t

1

h
(0)
t

B0 = + φ0(r̃i) =
1
r̃t

δt
∑t

t=0 r̃t,
δ ∈ (0, 1)

δth
(0)
t B0 = + φ0(r̃t) = r̃t

1
t+1

∑t
k=0 r̃k

1
t+1h

(0)
t B0 = + φ0(r̃t) = r̃t

of consistency for different sizes of inputs (r̃0, . . . , r̃t), since it requires the use of the same φj

for all input sizes. Note that for permutation invariant f , φj is independent of the time-step, i.e.
φj(i, r̃i) = φj(r̃i), and Bj is associative. All but one of the objectives f we consider in this
manuscript are permutation invariant.

Given Equation (18), we can directly construct the update function

h
(j)
t+1 = u(j) (r̃t, ht) = Bj

(
φj

(
h
(k)
t , r̃t

)
, h

(j)
t

)
, 0 ≤ j < k, (21)

where superscript (j) indicates the jth entry of a vector. Additionally,

h
(k)
t+1 = h

(k)
t + 1

is keeping track of the time step. In this case, each bj(r̃0, . . . , r̃t−1) is a dimension of ht. Finally,

ρ(r̃t, ht) = F

(
h
(k)
t+1,

{
h
(j)
t+1

}j=k−1

j=0

)
− F

(
h
(k)
t ,

{
h
(j)
t

}j=k−1

j=0

)
. (22)

We show in Table A3 how all functions in Table 1 can be written in this form.

C GRID ENVIRONMENT: EXPERIMENTS COMPARING TO CUI & YU (2023)

In this section, we compare our method to the more specialized method for solving NCMDPs intro-
duced by Cui & Yu (2023), which can only be applied in deterministic environments in conjunction
with Q-learning methods. We want to answer the question of whether our more general method
can be competitive even in this specialized scenario. To this end, we consider the min objective in
a grid environment, where each tile is associated with a deterministic reward sampled uniformly
from [−1, 1] when initializing the grid. At each step, the agent can choose to move forward and left,
forward and right, or forward and straight, and an episode terminates when the agent has crossed from
one side of the grid to the other (see Figure A2). We perform experiments on grid sizes N = 3, 4, 5
with 10 random grids per size. For each grid and training method, we train 5 agents with different
initialization. To facilitate a fair comparison between both methods, we use a vanilla deep Q-learning
algorithm with minimal hyperparameters for training (for details see Appendix D). We either extend
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Figure A2: Example of a grid environment for the min objective with N = 5. Orange arrows indicate
the ideal policy.
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Cui et. al.
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N=3, final return 
         Mean ours: 0.2108 
 Mean Cui et. al.: 0.1472
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N=4, final return 
         Mean ours: 0.0844 
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N=5, final return 
         Mean ours: -0.0916 
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Figure A3: Final return when training agents on the grid environment with our method (y-axis) and
the method of Cui & Yu (2023) (x-axis). We perform experiments on grid sizes N = 3, 4, 5 with
10 random grids per size (one marker is one grid). Per grid and training method we train 5 agents
with different initialization and show the standard deviation as bars. Our method performs better on
average for the 3 grid sizes.

the states and adjust the rewards as specified in Table 1 for the minimum objective and use the standard
Q-function update of Q-learning (ours), or we only change the Q-function update as specified by
Cui & Yu (2023) to Q(st, at)← min(rt, argmax

a
Q(st+1, a)). We find that our algorithm is not only

competitive with the method of Cui & Yu (2023), but even outperforms it in terms of average final
performance (see Figure A3) and trains equally fast (see Figure A4). Surprisingly, the prediction
loss of the Q-function is similar for both methods (see Figure A5). This suggests that small errors
in the Q-function learned by our method may be less detrimental to performance than errors in the
Q-function learned by the method of Cui & Yu (2023).

D DETAILS ON EXPERIMENTS

Lunar lander For training, we use the PPO implementation of stables-baselines3
[citepstable-baselines3. The hyperparameters and network architecture of both algorithms were
chosen as by Raffin (2020) (which are optimized to give good performance without the velocity
penalty), only increasing the batch size and the total training steps to ensure convergence. Training a
single agent takes around one hour on a Quadro RTX 6000 GPU with the environment running in
parallel on 32 CPUs.
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Figure A4: Area under the training curve when training agents on the grid environment with our
method (y-axis) and the method of Cui & Yu (2023) (x-axis). We perform experiments on grid sizes
N = 3, 4, 5 with 10 random grids per size (one marker is one grid). Per grid and training method
we train 5 agents with different initialization and show the standard deviation as bars. Both methods
perform similarly.

Portfolio optimization For training, we use the PPO implementation of stables-baselines3
(Raffin et al., 2021). The hyperparameters and network architecture of both algorithms were chosen
as by Sood et al. (2023) where they were optimized to give a good performance of the DIFFSHARPE
algorithm. Training a single agent takes around one hour on a Quadro RTX 6000 GPU with the
environment running in parallel on 10 CPUs.

Peak environment For training, we use a custom REINFORCE implementation with a tabular
policy to keep the number of hyperparameters minimal, updating the agent’s policy after each
completed trajectory. We use a learning rate of 2−10 but also performed experiments scanning the
learning rate which leaves qualitative results similar. Training a single agent takes around 20 minutes
on a Quadro RTX 6000 GPU with the environment running on a single CPU.

ZX-diagrams For training, we use the PPO implementation of Nägele & Marquardt (2024) to
facilitate the changing observation and action space. The hyperparameters and network architecture
were chosen as by Nägele & Marquardt (2024) who originally chose them to give good performance
of the PPO algorithm. This is the most compute-intensive experiment reported in this work with one
training run lasting for 12 hours using two Quadro RTX 6000 GPUs and 32 CPUs.

Quantum error correction For training, we use the PPO implementation of PureJaxRL (Lu
et al., 2022). For the code discovery task, we modify the reward to consist of the (normalized)
difference in immediate rewards used in Olle et al. (2023). The hyperparameters in the code discovery
task have been fixed throughout all cases and chosen to provide good performance in all the examples
considered with standard PPO. The hyperparameters for the logical state preparation task have been
chosen to be the optimal ones reported in Zen et al. (2024), which were optimized for performance of
the PPO algorithm. All of the training is done on a single Quadro RTX 6000 GPU. Training 10 agents
to complete the code discovery task takes 1 to 2 minutes, depending on the target code parameters.
For the logical state preparation task, it takes around 100 seconds for [[5, 1, 3]]l and around 2500
seconds for [[17, 1, 5]]l to train 10 agents in parallel.

Grid environment For training, we use a vanilla Q-learning algorithm. Per training run, we take a
total of 105 steps in the environment. After a warmup phase of 1000 steps, we train after every 100
steps taken in the environment on a batch consisting of the last 1000 experiences of the agent. For
exploration, we use an ϵ-greedy strategy with ϵ = 0.1. We use the Adam optimizer with the learning
rate linearly annealed from 10−2 to 10−7. For the Q-network, we use a multilayer perceptron with 2
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hidden layers of dimension 128 with tanh activations. One training run takes around 30 seconds on a
single CPU.

We estimate the total compute time to reproduce the results of this manuscript to be around 1000
GPU hours and 25000 CPU hours.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Train step

10−6

10−3

100
Lo

ss
N=3, grid 0

Train step

Lo
ss

N=4, grid 0

Train step

Lo
ss

N=5, grid 0

Train step

10−6

10−3

100

Lo
ss

N=3, grid 1

Train step

Lo
ss

N=4, grid 1

Train step

Lo
ss

N=5, grid 1

Train step

10−6

10−3

100

Lo
ss

N=3, grid 2

Train step

Lo
ss

N=4, grid 2

Train step

Lo
ss

N=5, grid 2

Train step

10−6

10−3

100

Lo
ss

N=3, grid 3

Train step

Lo
ss

N=4, grid 3

Train step

Lo
ss

N=5, grid 3

0 500 1000
Train step

10−6

10−3

100

Lo
ss

N=3, grid 4

0 500 1000
Train step

Lo
ss

N=4, grid 4

0 500 1000
Train step

Lo
ss

N=5, grid 4

Cui et. al. Ours

Figure A5: Square error when predicting the Q-function in the grid environment using our method
(orange) and the method of Cui & Yu (2023) (blue) against the training step. N indicates the grid size
with 10 different random grids per size (only 5 shown) and train 5 agents with different seeds per grid.
Lines show the mean loss and the maximum and minimum loss is shaded. The prediction loss of the
Q-function is similar for both methods but our method leads to higher performance (see Figure A3).
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Figure A6: Training progress of cumulative SUMVELPPO algorithm in the Lunar lander environment.
The standard deviation over 5 seeds is shaded.
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Figure A7: Training progress of non-cumulative MAXVELPPO algorithm in the Lunar lander
environment. The standard deviation over 5 seeds is shaded.
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Figure A8: Sharpe ratio on evaluation and test periods.
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Figure A9: Training progress in the portfolio optimization task. The standard deviation over 25 seeds
is shaded.
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Figure A10: Training progress in the quantum error correction tasks. The best and worst performance
of 10 seeds is shaded.
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